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Abstract
The present work is devoted to the derivation of an effective magnon–
paramagnon theory starting from a microscopic single-band lattice model
of ferromagnetic metals. For some values of the microscopic parameters it
reproduces the Heisenberg theory of localized spins. For small magnetization
the effective model describes the physics of weak ferromagnets. It allows us to
account for the magnon–magnon and magnon–paramagnon interactions going
beyond Moriya’s theory. The effective theory is written in a way which keeps
O(3) symmetry manifest, and describes both the ordered and disordered phases
of the system.

To derive the effective model a Schwinger-bosons–slave-fermions
representation of the operators is used. Within this approach the local Coulomb
repulsion is treated exactly, and as a result, the constants in the effective theory
are finite and well defined for all values of the magnetization.

An equation for the Curie temperature,which takes the magnon fluctuations
into account exactly, is obtained. For weak ferromagnets, in the spin-wave
approximation, the critical temperature scales like Tc ∼ m5/3. It is well below
the Stoner critical temperature Tc ∼ m and the critical temperature obtained
within Moriya’s theory Tc ∼ m3/2.

1. Introduction

The Heisenberg model of ferromagnetism, based on the exchange interaction of localized
electrons, gives an explanation of many properties of non-conducting magnetic systems at both
low and high temperatures. However, the development of a satisfactory theory of ferromagnetic
metals has run into difficulties.

Theories of weak ferromagnetic metals based on the Landau Fermi liquid theory have been
developed by several theorists [1–4]. The spectrum of the spin excitations has been found. It
consists of spin fluctuations of paramagnon type and a transverse spin-wave branch.

Murata and Doniach [5] have proposed a phenomenological mode–mode coupling theory
to describe the temperature dependence of the quantities for a weak ferromagnet. However,
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they started from a classical Hamiltonian and ignored the quantum effects, which are important
because of the low temperature nature of the weak ferromagnet.

An alternative approach to magnetic phase transitions in Fermi systems has been developed
by Moriya and Kawabata [6, 7]. It is a self-consistent one-loop approximation which accounts
for the spin fluctuations.

The nonlinear effects of spin fluctuations are treated in [8], using a self-consistent
rotationally invariant Hartree approximation.

New results concerning magnetic phase diagrams in Hubbard-type models have been
obtained within the dynamical mean-field theory [9, 10].

Perhaps the most striking feature of the itinerant ferromagnets is the quantum transition
to paramagnet. In [11], Hertz derives an effective paramagnon theory of a paramagnet
to ferromagnet quantum phase transition. He analysed the effective model by means of a
renormalization group method that generalizes Wilson’s treatment of classical phase transition
and concluded that the critical behaviour of itinerant ferromagnets in dimensions larger than
one are described by a mean-field fixed point. Hertz’s work has been reexamined in [12]. The
results of this paper support those of Hertz in the 3D case but in many aspects differ from them
in 2D.

A more realistic model of ferromagnetic metals is considered in [13, 14]. It contains
a particle–hole spin-triplet interaction that causes ferromagnetism, as well as particle–hole
spin-singlet and particle–particle interactions. The spin-triplet interaction is decoupled
by introducing a vector field whose average is proportional to the magnetization, and by
performing a Hubbard–Stratanovich transformation. Then the fermionic degrees of freedom
are integrated out accounting for the rest part of interaction by means of perturbation theory.
The resulting effective field theory is nonlocal. It contains an effective long-range interaction
between the order parameter fluctuations. The analysis in [13, 14] is restricted to power
counting arguments at tree level. It shows that the critical behaviour is governed by a Gaussian
fixed point and that all non-Gaussian terms are irrelevant in the renormalization group sense.
Logarithmic corrections to power-law scaling are obtained in the D = 3 case. For D < 3 the
deviations from mean-field theory results depend on D.

There is a considerable interest in the finite temperature properties of weak itinerant
ferromagnets. Experimentally, the transition in the weak ferromagnet MnSi has been
investigated at different Curie temperatures by applying hydrostatic pressure [15]. The
transition at high temperatures was found to be of second order, while at lower transition
temperatures it is of first order. In the first-order regime the transition temperature was found
to scale with pressure as Tc ∼ (pc − p)1/2. The scaling law is explained by a mean-field
analysis, assuming a dynamical exponent z = 3. But in Hertz’s theory [11], the dynamical
critical exponent is equal to three due to paramagnon excitations. Hence, in order to explain
correctly the characteristic features of itinerant ferromagnets it should be important to work
with an effective theory that keeps explicitly the magnon as well as paramagnon excitations.

Many decades of research on magnetism have led to the view that the disordered state
of itinerant ferromagnetism could be described in terms of Fermi liquid theory. Very recent
experiments [16] showed that this might be wrong. The experiments using MnSi reveal that
the Curie temperature falls monotonically with pressure p. The transition is second order up
to p∗ = 12 kbar, where Tc = 12 K. The transition is, however, weakly first order between p∗
and pc where Tc falls to zero. The main result is that in the interval p∗ < p < pc, and above
Tc, the resistivity exhibits a temperature dependence of the form ρ(T ) = ρ0 + AT 3/2, showing
the non-Fermi liquid nature of the normal state. The conventional T 2 form of resistivity is
observed in the ferromagnetic state and the normal state at pressures below p∗ and above
pc. In the ferromagnetic phase the spin fluctuations (magnons and paramagnons) renormalize
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the fermion’s parameters [17], keeping the Fermi liquid nature unchanged. When the system
undergoes a second-order phase transition, the magnons open a gap and the paramagnetic
Fermi liquid state is the ground state of the system. The T 3/2 power law of the resistivity is
not consistent with current models of itinerant ferromagnetism [4, 6–8, 10]. The origin of this
form of ρ(T ) may lie in extremely strong spin fluctuations near the quantum ferromagnetic to
paramagnetic transition, which changes the nature of the fermions’ ground state. To understand
this striking phenomena one needs an effective model of spin–spin interactions which describes
both the ordered and disordered phases of the system.

The present work is devoted to the derivation of an effective magnon–paramagnon theory
starting from a microscopic, single-band lattice model of ferromagnetic metals. This is an
effective theory of ferromagnets, and for some values of microscopic parameters it reproduces
the Heisenberg theory of localized spins. On the other hand, for small magnetization the
effective model describes the physics of weak ferromagnets. Thus, the effective magnon–
paramagnon theory interpolates between theories of localized and itinerant electrons. The
zero-temperature dimensionless magnetization per lattice site m is introduced to describe this
interpolation. It parametrizes the ground state of the system, and moving m we change the
ground state and respectively the fluctuations above it. When m is maximal (m = 1

2 ) all
the lattice sites are occupied by one electron with spin up in the ground state, and the only
relevant excitations are magnons. The effective theory is the Heisenberg theory of localized
spins. When the magnetization is smaller, i.e. some of the lattice sites are doubly occupied
or empty in the ground state, the spectrum consists of paramagnon and magnon excitations
and the effective theory is a ‘spin m’ Heisenberg theory coupled to paramagnon fluctuations.
Decreasing the magnetization results in changing the parameters of the spin fluctuations, and
close to the quantum critical point m = 0 the paramagnon becomes important due to the
singularity in the paramagnon propagator. In the quantum paramagnetic phase (m = 0), the
magnon excitations disappear from the spin spectrum and one obtains Hertz’s effective model.

The ferromagnetic order parameter is a vector �M field. The transverse spin fluctuations
(magnons) are described by M1 + iM2(M1 − iM2) and the longitudinal fluctuations
(paramagnons) by M3 − 〈M3〉. Alternatively the vector field can be written as a product of its

amplitude ρ =
√

M2
1 + M2

2 + M2
3 and an unit vector �n, �M = ρ�n. In the ferromagnetic phase

one sets M3 = 〈M3〉+ϕ and in the linear (spin-wave) approximation one obtains ρ = 〈M3〉+ϕ.
It is evident now that the fluctuations of the ρ field, ρ − 〈M3〉, are exactly the paramagnon
excitations in a formalism which keeps O(3) symmetry manifest. One can write the effective
theory in terms of �M-vector components or, equivalently, in terms of ρ and an unit vector
�n. I use the parametrization in terms of unit vector and spin singlet amplitude because the
unit vector �n describes the true Goldstone modes of the order parameter. The effective action
keeps the O(3) symmetry manifest and describes both the ordered and disordered phases of
the system. Above the Curie temperature the spectrum consists of spin-singlet fluctuations of
paramagnon type and spin- 1

2 spinon fluctuations. The spinon has a gap, but near the critical
temperature it approaches zero and spin- 1

2 fluctuations as well as paramagnons are essential
in describing the thermal phase transition of itinerant ferromagnets.

An equation for the Curie temperature, which takes the magnon fluctuations into account
exactly, is obtained. For weak ferromagnets the critical temperature scales like Tc ∼ m5/3.
It is well below the Stoner critical temperature Tc ∼ m and the critical temperature obtained
within Moriya’s theory Tc ∼ m3/2 [18].

Scaling arguments based on Hertzs renormalization group technique allow us to obtain
a relation between spin stiffness and the inverse longitudinal magnetic susceptibility. The
relation is a consequence of the fact that the quantum critical exponent is equal to 3. Making use
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of the relation one can obtain the contribution of magnon scattering to the inverse longitudinal
magnetic susceptibility.

To derive the effective model a Schwinger-bosons–slave-fermions representation of the
operators is used. The salient point is that within this approach the local Coulomb repulsion is
treated exactly. As a result, the constants in the effective theory are finite and well defined for
all values of the magnetization m as opposed to the nonlocal effective theory (see [13, 14]),
where the Coulomb interaction is accounted for perturbatively.

The advantage of the single-band model is its comparative mathematical simplicity. It is
simple enough to handle in detail, but yet close enough to physical realty to supply with useful
information, and the obtained effective model to be of general application. It is physically
motivated to discuss this model if the Fermi surface lies within a single conduction band, and
if this band is well separated from the other bands and the interaction is not too strong [19].

The paper is organized as follows. In section 2 an effective magnon–paramagnon theory
of ferromagnetic metals is obtained. The Curie temperature is calculated and written in terms
of magnetization and spin stiffness constants. In section 3, Hertz’s renormalization group in
tree approximation is extended to include the magnon fluctuations. Section 4 is devoted to the
concluding remarks.

2. Magnon–paramagnon effective model

The simplest, single-band lattice model of ferromagnetic metals is determined by the
Hamiltonian [20, 21]

Ĥ = −t
∑

〈i, j〉,σ
(ĉ+

iσ ĉ jσ + h.c.) − J
∑
〈i, j〉

�̂Si · �̂S j + U
∑

i

n̂i↑n̂i↓ − µ
∑

i

n̂i . (1)

Here ĉ+
iσ and ĉ jσ are creation and annihilation operators for electrons, n̂iσ = ĉ+

iσ ĉiσ and

n̂i = ∑
σ n̂iσ are density operators, and �̂Si = 1

2

∑
σσ ′ ĉ+

iσ �τσσ ′ ĉiσ ′ , where �τ denotes the vector
of Pauli matrices, are spin operators. The sums are over all sites of a three-dimensional cubic
lattice, 〈i, j〉 denotes the sum over the nearest neighbours and µ is the chemical potential. In (1)
the parameter J is an off-diagonal matrix element of the Coulomb interaction between electrons
in Wannier states at nearest-neighbour sites which is generically ferromagnetic (J > 0) in
nature and U is the usual Hubbard on-site repulsion [19].

In terms of Schwinger bosons (ϕ̂i,σ , ϕ̂
†
i,σ ) and slave fermions (ĥi , ĥ†

i , d̂i , d̂†
i ) the operators

have the following representation:

ĉi↑ = ĥ†
i ϕ̂i1 + ϕ̂

†
i2d̂i , ĉi↓ = ĥ†

i ϕ̂i2 − ϕ̂
†
i1d̂i , n̂i = 1 − ĥ+

i ĥi + d̂+
i d̂i ,

ĉ†
i↑ĉi↑ĉ†

i↓ĉi↓ = d̂†
i d̂i , �̂Si = 1

2

∑
σσ ′

ϕ̂+
iσ �τσσ ′ ϕ̂iσ ′, ϕ̂

†
iσ ϕ̂iσ + d̂†

i d̂i + ĥ†
i ĥi = 1.

(2)

The partition function can be written as a path integral over the complex functions of the
Matsubara time τ ϕiσ (τ )(ϕ̄iσ (τ )) and Grassmann functions hi(τ )(h̄i(τ )) and di(τ )(d̄i(τ )) [22]:

Z(β) =
∫

Dµ (ϕ̄, ϕ, h̄, h, d̄, d, )e−S . (3)

The action is given by the expression

S =
∫ β

0
dτ

[∑
i

(ϕ̄iσ (τ )ϕ̇iσ (τ ) + h̄i (τ )ḣi(τ ) + d̄i(τ )ḋi(τ )) + H (ϕ̄, ϕ, h̄, h, d̄, d)

]
, (4)

where β is the inverse temperature and the Hamiltonian is obtained from equations (1) and (2)
replacing the operators with the functions. In terms of Schwinger bosons and slave fermions
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the theory is U(1) gauge-invariant, and the measure includes δ functions that enforce the
constraint and the gauge-fixing condition

Dµ(ϕ̄, ϕ, h̄, h, d̄, d) =
∏
i,τ,σ

Dϕ̄iσ (τ )Dϕiσ (τ )

2π i

∏
iτ

Dh̄i (τ )Dhi (τ )Dd̄i (τ )Ddi(τ )

×
∏
iτ

δ(ϕ̄iσ (τ )ϕiσ (τ ) + h̄i (τ )hi (τ ) + d̄i(τ )di(τ ) − 1)
∏
iτ

δ(g. f ). (5)

I make a change of variables, introducing new Bose fields fiσ (τ )( f̄iσ (τ )) [23]:

fiσ (τ ) = ϕiσ (τ )(1 − h̄i (τ )hi (τ ) − d̄i(τ )di(τ ))−1/2,

f̄iσ (τ ) = ϕ̄iσ (τ )(1 − h̄i (τ )hi (τ ) − d̄i(τ )di(τ ))−1/2,
(6)

where the new fields satisfy the constraint

f̄iσ (τ ) fiσ (τ ) = 1. (7)

In terms of the new fields the spin vector and the action have the form

�Si (τ ) = 1
2

∑
σσ ′

f +
iσ (τ )�τσσ ′ fiσ ′(τ )(1 − h̄i(τ )hi (τ ) − d̄i(τ )di(τ )) (8)

S =
∫ β

0
dτ

{∑
i

[
f̄iσ (τ ) ḟiσ (τ ) + h̄i (τ )

(
∂

∂τ
− f̄iσ (τ ) ḟiσ (τ )

)
hi (τ )

+ d̄i(τ )

(
∂

∂τ
− f̄iσ (τ ) ḟiσ (τ )

)
di(τ )

]
+ H ( f̄ , f, h̄, h, d̄, d)

}
, (9)

where H ( f̄ , f, h̄, h, d̄, d) is the Hamiltonian

H = −t
∑
〈i, j〉

[d̄i d j f̄ jσ fiσ + d̄ j di f̄iσ f jσ − h̄i h j f̄ jσ fiσ − h̄ j hi f̄iσ f jσ

+ (hi d j − h j di)( f̄i1 f̄ j2 − f̄i2 f̄ j1) + (d̄ j h̄i − d̄i h̄ j )( fi1 f j2 − fi2 f j1)]

× (1 − h̄i hi − d̄i di)
1/2(1 − h̄ j h j − d̄ j d j)

1/2

+
J

2

∑
〈i, j〉

[h̄i hi + d̄i di + h̄ j h j + d̄ j d j ] − J

2

∑
〈i, j〉

(h̄i hi + d̄i di)(h̄ j h j + d̄ j d j)

+
J

8

∑
〈i, j〉

(�n j − �ni )
2(1 − h̄i hi − d̄i di)

1/2(1 − h̄ j h j − d̄ j d j)
1/2

+ U
∑

i

d̄i di − µ
∑

i

(1 − h̄i hi + d̄i di). (10)

In equation (10) �ni = ∑
σσ ′ f̄iσ �τσ,σ ′ fiσ ′ is a unit vector. Equation (8) describes in an O(3)

covariant way the spin. When the lattice site is empty or doubly occupied the spin vector is
zero. When the lattice site is occupied by one electron the unit vector �ni identifies the local
orientation. One can consider the first two components ni1 and ni2 as independent, and then

ni3 =
√

1 − n2
i1 − n2

i2. In the leading order of the fields, the spin vector has the form

Si1 	 1
2 ni1, Si2 	 1

2 ni2, Si3 − 1
2 	 − 1

2 (h̄i hi + d̄i di). (11)

The last equation shows that the longitudinal spin fluctuations are associated with the collective
fields (h̄i hi + d̄i di).

To avoid misunderstandings, it is important to point out that the charge waves are
associated with the collective field (d̄i di − h̄i hi ) (see the representation of the electron number
operator (2)).
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To formulate a mean-field theory I drop the terms of order equal or higher than six in the
Hamiltonian equation (10). It is convenient to replace the term J

2

∑
〈i, j〉(h̄i hi + d̄i di)(h̄ j h j +

d̄ j d j) in equation (10) with the local one 3J
2

∑
i(h̄i hi + d̄i di)

2. The difference is in higher order
of derivatives and I will drop it. Then one can decouple this term, by means of the Hubbard–
Stratanovich transformation, introducing a real, spin-singlet and gauge-invariant field:

exp

(
3J

2

∫ β

0
dτ

∑
i

(h̄i (τ )hi(τ ) + d̄i(τ )di(τ ))2

)
=

∫ ∏
iτ

DSi (τ )

× exp

(
−

∫ β

0
dτ

∑
i

[
3J

2
Si (τ )Si (τ ) − 3J (h̄i(τ )hi (τ ) + d̄i(τ )di(τ ))Si (τ )

])
. (12)

Now, the action is quadratic with respect to the fermions and one can integrate them out. The
resulting action depends on the spinons and the real field Si . It has a minimum at the point
Si = s0, fiσ = fσ and the stationary condition is

s0 = 〈h̄i hi + d̄i di〉. (13)

Expanding the effective action around this point one obtains the effective model.
To improve the calculations I account for terms of order six and higher, replacing the

collective field h̄i hi + d̄i di in these terms by its mean-field value from equation (13). The new
Hamiltonian depends on the fields f̄iσ (τ ), fiσ (τ ), 2ϕi(τ ) = s0 − Si (τ ), and is quadratic with
respect to the fermions

H = −t
∑
〈i, j〉

[d̄i d j + d̄ j di − h̄i h j − h̄ j hi ] + (6m J + U − µ)
∑

i

d̄i di + (6m J + µ)
∑

i

h̄i hi

− 2mt
∑
〈i, j〉

[(d̄id j − h̄i h j)( f̄ jσ fiσ − 1) + (d̄ j di − h̄ j hi )( f̄iσ f jσ − 1)

+ (hi d j − h j di)( f̄i1 f̄ j2 − f̄i2 f̄ j1) + (d̄ j h̄i − d̄i h̄ j )( fi1 f j2 − fi2 f j1)]

+ 6J
∑

i

ϕi(h̄i hi + d̄i di) +
(2m)2 J

8

∑
〈i, j〉

(�n j − �ni )
2 (14)

where m = 1
2 (1 − s0). Integrating out the fermions one obtains the action of the effective

theory.
To get an intuition how the effective action looks, it is important to stress that the

spinon fields contribute the action through the fields f̄iσ (τ ) ḟiσ (τ ), f̄iσ (τ )( f jσ (τ ) − fiσ (τ )),
( fi1(τ ) f j2(τ )− f j1(τ ) fi2(τ )) and (�n j − �ni )

2 (see equation (14)). In the continuum limit they
have the form f̄σ ∂µ fσ (µ = τ, x, y, z), ( f1∂ν f2 − f2∂ν f1) (ν = x, y, z) and ∂ν �n · ∂ν �n. The
4-vector Aµ = i f̄σ ∂µ fσ transforms as an U(1) gauge field, ( f1∂ν f2 − f2∂ν f1) as a charge-two
complex field and ∂ν �n · ∂ν �n is gauge invariant. Hence, the simplest gauge-invariant and spin-
singlet contributions of the first two fields have the form ( f̄1∂ν f̄2 − f̄2∂ν f̄1)( f1∂ν f2 − f2∂ν f1)

and (∂µ1 Aµ2 − ∂µ2 Aµ1)(∂µ1 Aµ2 − ∂µ2 Aµ1). It is not difficult to check that

( f̄1∂ν f̄2 − f̄2∂ν f̄1)( f1∂ν f2 − f2∂ν f1) = 1
4∂ν �n · ∂ν �n. (15)

The term (∂µ1 Aµ2 − ∂µ2 Aµ1)(∂µ1 Aµ2 − ∂µ2 Aµ1) is of the same order as (∂ν �n · ∂ν �n)2 and I will
ignore it. To obtain the effective theory it is convenient to set the gauge field Aµ = i f̄σ ∂µ fσ
equal to zero, and to account for the contribution of the complex field ( f1∂ν f2 − f2∂ν f1), the
real field is ϕ and ∂ν �n · ∂ν �n. An important exclusion is the f̄σ ∂τ fσ field which contributes
linearly to the action.
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Expanding the effective functional around the mean-field point and keeping only the first
three terms, one can write the effective action in the form

Se f f = SH + Sp + Sint . (16)

SH is the action of the Heisenberg theory of localized spins. In continuum limit it has the
form

SH =
∫

dτ d3�r
[

2m f̄σ (τ, �r) ḟσ (τ, �r) +
m2 Jr

2

3∑
ν=1

∂ν �n(τ, �r ) · ∂ν �n(τ, �r)

]
. (17)

In equation (17), m = 1
2 (1 − s0), and s0 comes from ‘tadpole’ diagrams with one h or d line,

where the h and d dispersions are

εh
k = 2t (cos kx + cos ky + cos kz) + 6Jm + µ,

εd
k = −2t (cos kx + cos ky + cos kz) + 6Jm − µ + U.

(18)

The renormalized exchange coupling constant has the following representation in terms of
microscopic parameters and at zero temperature1

Jr = J − 4t2

12Jm + U
+

8

3

t2

12Jm + U

1

N

∑
k

(
3∑

ν=1

sin2 kν

)
(nh

k + nd
k ). (19)

In equation (19), nd
k and nh

k are the occupation numbers for d and h fermions, respectively.
The first term is due to the direct Heisenberg exchange term in equation (14), and the other
terms are due to Anderson’s superexchange. The last two terms are obtained by calculating
the one-loop self-energy diagrams of h and d fermions. The superexchange contribution to the
exchange coupling constant goes to zero for small magnetization. Hence, near the quantum
phase transition one can replace the renormalized coupling constant Jr by a bare one J .

Sp is the contribution to the effective action of the paramagnon excitations

Sp = 1

2

∫
dω

2π

d3 p

(2π)3
ϕ(ω, �p)

(
r + a

|ω|
p

+ bp2

)
ϕ(−ω,− �p) (20)

where

r = 12J [1 − 3J (N(εh
F ) + N(εd

F ))] (21)

and the constants a and b are calculated in a continuum limit:

a = 18π J 2

(
N(εh

F )

vh
F

+
N(εd

F )

vd
F

)
b = 3J 2

(
N(εh

F )

(kh
F)2

+
N(εd

F )

(kd
F )2

)
. (22)

It is obtained from the Lindhard functions for h and d fermions in the limit when p and ω
p are

small.
Finally, the spinon–paramagnon interaction has the form

Sint = m2λ

∫
dτ d3�r ϕ(τ, �r)

[
3∑

ν=1

∂ν �n(τ, �r ) · ∂ν �n(τ, �r )

]
(23)

where

λ = 16J t2

(12Jm + U)2

1

N

∑
k

(
3∑

ν=1

sin2 kν

)
(1 − nh

k − nd
k ). (24)

1 The present discussion is correct if the renormalized exchange coupling constant is positive. To this end, it is
sufficient for the microscopic parameters to satisfy the inequality 4t2/U < J .
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The effective magnon–paramagnon coupling is obtained from triangular diagrams with two h
and one d lines or with two d and one h lines.

To analyse the effective model, it is more convenient to rewrite it in terms of rescaled
spinon fields

ζ̄iσ = √
2m f̄iσ , ζiσ = √

2m fiσ . (25)

The new fields satisfy the constraint

ζ̄iσ ζiσ = 2m, (26)

and the action of the effective theory has the form

Sef f =
∫

dτ d3�r
[
ζ̄σ (τ, �r )ζ̇σ (τ, �r ) +

Jr

2

3∑
ν=1

∂ν
�M(τ, �r ) · ∂ν

�M(τ, �r )

+
λ

4
ϕ(τ, �r )

[
3∑

ν=1

∂ν
�M(τ, �r ) · ∂ν

�M(τ, �r)

]]
+ Sp, (27)

where �M is the spin vector

�M = 1
2 ζ̄σ �τσ,σ ′ζσ ′, �M2 = m2 (28)

and Sp is given by equation (20).
It follows from equation (8) that the dimensionless magnetization of the system, per lattice

site is defined by the equation

〈S3
i 〉 = 1

2 〈n3
i 〉(1 − 〈h̄i hi + d̄i di 〉). (29)

At zero temperature 〈n3
i 〉 = 1 and using equation (13) one obtains that m is the zero-temperature

dimensionless magnetization of the system per lattice site, m = 〈S3
i 〉. The parameter m depends

on the microscopic parameters of the theory and characterizes the vacuum. If, in the vacuum
state, every lattice site is occupied by one electron with spin up, then m = 1

2 (s0 = 0), the
parameters a and b from equation (20) are equal to zero and r = 3J

2 . In this case one can
integrate over the paramagnons and the resulting theory is the spin 1

2 Heisenberg theory of the
localized spins. When, in the vacuum state, some of the sites are doubly occupied (〈d̄i di〉 �= 0)

or empty (〈h̄i hi 〉 �= 0), then m < 1
2 , the relevant excitations are the spinon and paramagnon

excitations and the effective theory is a ‘spin m’ Heisenberg theory coupled to paramagnon
fluctuations defined by equations (26)–(28). The system approaches the quantum critical point
when m → 0 (s0 → 1). One can see directly, from the stationary condition (13), that r(m)

approaches zero when m → 0. Hence, the parameter r measures the distance from the quantum
critical point. In a quantum paramagnetic phase (m = 0), the spinon excitations disappear
from the spin spectrum (see equations (26) and (28)) and one obtains Hertz’s effective model.
One can add a four-paramagnon term, calculating one-loop diagrams with four h or d fermion
lines, but I have dropped it, motivated by Hertz’s result.

The effective theory is U(1) gauge-invariant. Below the Curie temperature it is convenient
to introduce explicitly the magnon excitations. To this end, I impose the gauge-fixing condition
in the form arg ζi1 = 0. Then the constraint (26) can be solved by means of the complex
field ai(τ ) = ζi2 and ζi1 = √

2m − āi(τ )ai(τ ). For the components of the spin vector
M+ = M1 +iM2, M− = M1 −iM2, and M3 one obtains the Holstein–Primakoff representation:

M+
i (τ ) = √

2m − āi(τ )ai(τ )ai(τ ), M−
i (τ ) = āi (τ )

√
2m − āi(τ )ai(τ ),

M3
i (τ ) = m − āi (τ )ai(τ ).

(30)
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The kinetic term in the action and the measure are the same as the kinetic term and the measure
in the theory of Bose field. The only difference is that the complex fields are subject to the
condition āi(τ )ai(τ ) � 1.

In the spin-wave theory one approximates
√

2m − āi(τ )ai(τ ) and integrates over the
whole complex plane. Then, the model is simplified and can be written in terms of magnon
ai(τ )(āi(τ )) and paramagnon ϕi(τ ) fields:

Sef f =
∫

dω

2π

d3 p

(2π)3

[
ā(ω, �p)(iω + ρp2)a(ω, �p) +

1

2
ϕ(ω, �p)

(
r + a

|ω|
p

+ bp2

)
ϕ(−ω,− �p)

]

+
mλ

2

∫ 2∏
l=1

dωl

2π

d3 pl

(2π)3
( �p1 · �p2)ā(ω1, �p1)a(ω2, �p2)ϕ(ω1 − ω2, �p1 − �p2) (31)

where

ρ = m Jr (32)

is the spin stiffness constant.
Let us rewrite the spin vector (equation (8)) in terms of the vector �M (equation (28))

and use the Holstein–Primakoff representation (equation (30)). Then the magnetization of the
system per lattice site is given by the expression

〈S3
i 〉 = m − 〈āi ai〉. (33)

The equation for the critical temperature 〈S3
i 〉 = 0 is

m = 〈āi ai〉. (34)

Equation (34) follows from the exact representation for the third component of the spin ((8),
(30) and (33)). Hence it takes the magnon fluctuations into account exactly. The equation
allows us to account for the magnon–magnon and magnon–paramagnon interactions, thus
going beyond Moriya’s theory.

In the spin-wave approximation and for magnon dispersion in the form εa(p) = ρp2 one
obtains for the Curie temperature

Tc = κm2/3ρ(m) (35)

where the constant κ can be written in terms of gamma �(z) and Riemann ζ(z, q) functions
κ = (�( 3

2 )ζ( 3
2 , 1)/4π2)−2/3. In the spin-wave approximation the spin stiffness constant

is given by equation (32). Hence, when the system approaches the quantum critical point
(m → 0), the critical temperature scales with magnetization like Tc ∼ m5/3.

One can improve the equation for the Curie temperature replacing the zero-temperature
dimensionless magnetization m by the finite-temperature solution m(T ) of the mean-field
equation (13):

Tc = κm2/3(Tc)ρ(m(Tc)). (36)

For conventional weak ferromagnets m(Tc) ∼ m and equation (35) is an appropriate expression
for Curie temperature. But for high Tc weak ferromagnets the correct equation for the critical
temperature is equation (36).

In the spin-wave approximation the transverse components of the spin fields are
proportional to the magnon fields

S+
i (τ ) = √

2mai(τ ), S−
i (τ ) = √

2māi(τ ) (37)

and the field ϕi (τ ) is exactly the paramagnon (longitudinal spin fluctuation)

S3
i (τ ) − 〈S3

i 〉 = ϕi(τ ). (38)
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Hence, in the Gaussian approximation, spin–spin correlation functions have the form

Dtr (ω, �p) = 2m

iω + ρp2
, Dlong(ω, �p) = 1

r + a|ω|/p + bp2
(39)

where the longitudinal magnetic susceptibility is

χ = Dlong(0, 0) = 1

r
. (40)

3. Scaling behaviour

Scaling arguments, based on Hertz’s renormalization group technique allow us to obtain a
relation between the spin stiffness and the parameter r–the inverse longitudinal magnetic
susceptibility.

To begin with, I introduce a cut-off and redefine the momenta introducing a dimensionless
one. RG construction starts with a definition of ‘soft’ and ‘fast’ modes:

�(ω, �p) = �<(ω, �p) + �>(ω, �p)

�<(ω, �p) = �(ω, �p) for |p| < e−l

�>(ω, �p) = �(ω, �p) for e−l � |p| � 1
(41)

where �(ω, �p) stands for magnons, a(ω, �p), ā(ω, �p) and paramagnon ϕ(ω, �p) fields. The
action equation (31) depends on the ‘slow’ and the ‘fast’ modes. In the tree approximation
one keeps only the ‘slow’ modes

Stree(ā, a, ϕ) = S(ā<, a<, ϕ<). (42)

The next step is to change the variables, letting

�p′ = el �p, ω′ = ezlω. (43)

The new momenta runs over the whole interval 0 � |p′| � 1, and in terms of the new variables
the action has the form

Stree = e−(z+3)l
∫

dω′

2π

d3 p′

(2π)3

[
ā<(e−zlω′, e−l �p′)(ie−zlω′ + m Jr e−2l p′2)a<(e−zlω′, e−l �p′)

+
1

2
ϕ<(e−zlω′, e−l �p′)

(
r + e(−z+1)la

|ω′|
p′ + e−2l bp′2

)
ϕ<(−e−zlω′,−e−l �p′)

]

+ �e−2(z+4)

∫ 2∏
l=1

dω′
l

2π

d3 p′
l

(2π)3
( �p′

1 · �p′
2)ā<(ω′

1, �p′
1)a<(ω′

2, �p′
2)

× ϕ<(ω′
1 − ω′

2, �p′
1 − �p′

2), (44)

where I have used the short notation for the magnon–paramagnon coupling constant � =
mλ/2.

It is apparent that, if one chooses z = 3, the coefficient of a |ω′|
p′ , in the paramagnon

quadratic term, is the same as the coefficient of bp′2. Then rescaling the paramagnon ϕ, one
can make the total coefficient of both of them unity:

ϕ′(ω′, �p′) = e−z+5/2lϕ<(e−zlω′, e−l �p′). (45)

To complete the RG transformation, one has to rescale the magnon fields too, to make the
coefficient of iω′ unity:

a<(ω′, �p′) = e−2z+3/2a<(e−zlω′, e−l �p′), ā<(ω′, �p′) = e−2z+3/2ā<(e−zlω′, e−l �p′). (46)
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Then, for the transformed action one obtains

S′(ā′, a′, ϕ′) =
∫

dω′

2π

d3 p′

(2π)3

[
ā′(ω′, �p′)(iω′ + ρ ′ p′2)a′(ω′, �p′) +

1

2
ϕ′(ω′, �p′)

×
(

r ′ + a
|ω′|
p′ + bp′2

)
ϕ′(−ω′,− �p′, )

]
+ �′

∫ 2∏
l=1

dω′
l

2π

d3 p′
l

(2π)3

× ( �p′
1 · �p′

2)ā
′(ω′

1, �p′
1)a

′(ω′
2, �p′

2)ϕ
′(ω′

1 − ω′
2, �p′

1 − �p′
2) (47)

where r ′, ρ ′ and �′ are the transformed parameters

r ′ = r(l) = re2l

ρ ′ = ρ(l) = ρe(z−2)l = ρel

�′ = �(l) = �ez−5/2l = �e−l .

(48)

Excluding the scaling parameter l one obtains the relations (RG invariants)

r ′

ρ ′2 = r

ρ2
, r ′�′2 = r�2. (49)

The bare parameter r scales with magnetization like r = r0m2, and the bare spin
stiffness constant is proportional to the magnetization (see equation (31)). Hence, for weak
ferromagnets, one obtains

r(m) ∼ ρ2(m). (50)

The relation equation (50) is a consequence of the fact that the quantum critical exponent
is equal to three (z = 3). It holds even if the magnon–magnon interaction is introduced.
Calculating the magnon contribution to the spin stiffness, one can use it to obtain the magnon
scattering corrections to the inverse longitudinal magnetic susceptibility r . For weak itinerant
ferromagnets r is small and, as follows from the second of equations (49), the magnon–
paramagnon coupling constant � is large. Hence, near the quantum phase transition, the
magnon–paramagnon interaction is strong and cannot be treated perturbatively.

Making use of equation (50) one can obtain that

Tc ∼ m2/3Ts (51)

where Ts = constant × √
r ∼ m is Stoner’s expression for the critical temperature. For weak

ferromagnets m < 1
2 , and Tc is well below Stoner’s critical temperature, as it should be. The

Curie temperature obtained within Moriya’s theory scales with magnetization like ∼m3/2 [18].
The result indicates that the spin-m Heisenberg model coupled to a paramagnon provides

a good description of the itinerant ferromagnets.

4. Conclusions

The advantage of the present approach is the explicit separation of the spin fluctuations and
the charge carriers realized by means of the Schwinger-bosons–slave-fermions representation
of operators. One can represent the Hamiltonian equation (10) as a sum of two terms
H = H naked + H ′, where H naked depends on charge carriers hi and di only, while H ′ depends on
spinon fluctuations f iσ and describes spinon–fermion interaction. The investigation of itinerant
ferromagnets can be achieved in two steps. Within the ‘naked’ model,with Hamiltonian H naked,
one can obtain an expression for the magnetization m = 1

2 (1 − 〈h̄i hi + d̄i di〉, which is exact at
zero temperature. Equation (36) accounts for the spin fluctuations exactly. One can see from
the Hamiltonian H ′ that the composed fields hi d j − h j di are associated with the transverse
spin fluctuations, while the fields h̄i hi + d̄i di are associated with the longitudinal one. The
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Green functions of these fields give us the parameters of the effective theory equation (27).
The next step is to study the magnon–paramagnon effective theory itself.

I use a mean-field approximation to study the ‘naked’ theory and to obtain the coefficients
in the effective theory. To this end the direct Heisenberg exchange interaction which favours
ferromagnetism in an obvious way is necessary. The Hubbard term is diagonalized, which
enables us to account for the on-site Coulomb repulsion exactly. As a result, I obtain that the
vertices in the effective functional exist in the limit of zero frequencies and wavenumber, and
that the constants are well defined for all values of the magnetization.

For a theory with J = 0, one has to go beyond the mean-field theory. But, even in that
case, the ‘naked’ theory is preferable to the original Hubbard model. Coulomb repulsion U
is the largest energy scale in the problem, and it is desirable to diagonalize this term. It is not
adequate to drop it, as in [11], or to treat it perturbatively, as in [13, 14]. Going beyond the
mean-field theory, one obtains the same effective magnon–paramagnon theory with different
expressions for the coefficients and different conditions for the ferromagnetic instability.

The effective model differs from the models discussed in [11, 13, 14] in many ways. It
describes in a unified way both the ordered and disordered phases of the system. Altering the
parameters, it interpolates between the Heisenberg theory of localized spins and Hertz’s theory
of nearly ferromagnetic metals. In the ferromagnetic phase the important spin fluctuations are
transversal magnon fluctuations and longitudinal paramagnon fluctuations. In the thermal
paramagnetic phase (above the Curie temperature) the spectrum consists of spin-singlet
fluctuations of paramagnon type and spin- 1

2 spinon fluctuations. Well above the critical
temperature the spinon has a large gap, and the physics of ferromagnetic metals is dominated
by the paramagnon fluctuations. But just above Tc the spinon’s gap approaches zero [24] and
the contribution of the spin- 1

2 fluctuations is essential. The very strong spinon–paramagnon
interaction near the quantum phase transition breaks the ‘spin-liquid’ picture, which in turn
leads to the formation of a non-Fermi liquid, in accordance with experimental observation [16].
Crossing the quantum critical point (m = 0), the spinon excitations disappear from the
spectrum and only the paramagnon survives in the quantum paramagnetic phase.

The effective model equations (27) and (31) enable us to estimate to what extend the
Green functions calculations [4], and the Moriya–Kawabata approximation [6] are applicable.
Within these approaches, the spin stiffness constant is proportional to the magnetization. The
same result follows from the effective model equation (31) where the nonlinear magnon–
magnon interaction is not considered. Moriya’s theory is a very successful description of many
ferromagnetic systems for which the spin-wave approximation gives an adequate account of
the spin fluctuations. On the other hand, it follows from the spin-wave expansion that the
magnon vertices are of order ( 1

m )n . Hence, on the verge of ferromagnetism they are relevant,
and one has to go beyond Moriya’s theory. One way to do this is to use a renormalization
group approach in the spin-wave theory, which allows for the analysis of systems with small
spins [25]. The magnon–magnon interaction changes the small magnetization asymptote of
the spin stiffness constant ρ = m1+αρ0, where α > 0.
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